Laboratoř molekulární chronobiologie
Cirkadiánní biologické hodiny se nacházejí u téměř všech živých organismů a jejich základní vlastnosti jsou vysoce konzervovány u obratlovců i bezobratlých. Moucha octomilka, Drosophila melanogaster, sloužila jako hlavní modelový druh hmyzu pro molekulární analýzu cirkadiánních rytmů. Jelikož funkční vlastnosti cirkadiánních biologických hodin jsou identické u všech mnohobuněčných organismů, předpokládalo se, že i molekulární mechanismus vytvářející cirkadiánní hodiny bude také vysoce konzervován. My jsme však překvapivě nalezli zcela zásadní rozdíly v molekulárních regulacích cirkadiánních časovacích systémů i mezi jednotlivými druhy hmyzu. Dlouhodobým cílem naší laboratoře je získat podklady pro lepší porozumění buněčných a molekulárních mechanismů, které se podílejí na vytváření cirkadiánní rytmicity.
Řešené výzkumné projekty
Řízení diapauzy hmyzu
References:
Doležel D. (2015) Photoperiodic time measurement in insects. Current Opinion in Insect Science: accepted. DOI: 10.1016/j.cois.2014.12.002
Smýkal V., Bajgar A., Provazník J., Fexová S., Buřičová M., Takaki K., Hodková M., Jindra M., Doležel D. (2014) Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochemistry and Molecular Biology 45: 69-76.
Bajgar A., Jindra M., Doležel D. (2013) Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proceedings of the National Academy of Sciences of the United States of America 110: 4416-21.
Bajgar A., Doležel D., Hodková M. (2013) Endocrine regulation of non-circadian behavior of circadian genes in insect gut. Journal of Insect Physiology 59: 881-886.
Fylogeografie ruměnice pospolné, Pyrrhocoris apterus
We use our favorite model organism, Linden bug (Pyrrhocoris apterus), to study diapause and particularly its photoperiodic regulation. Seasonal environmental changes are mostly influenced by latitude and altitude of particular locality. Indeed, we observe remarkable variability in photoperiodic and circadian clocks between geographical field-lines of P. apterus. To further understand the genetic basis of this variability, we would like to identify relationship between geographical populations and reconstruct the phylogeography of this species. Current collection of P. apterus (see the map) was only possible thanks to generous help of following colleagues: Adam Bajgar, Alejandro Cabezas-Cruz, Aleksandra Konjevic, Barbara Lis, Jerzy A. Lis, Carl-Cedric Coulianos, Rodolfe Costa, Dora Nagy, Eva Hola, Hanka Vaneckova, Iva Fukova, Jana Pavlová, Joanna Kotwica-Rolinska, Jula Lukes, Kai Schuette, Kajka Straznicka, Lucia Salis, Lukas Cizek, Lukas Drag, Manuel Baena, Marek Jindra, Marketa Ondrackova, Martin Kaltenpoth, Martin Vacha, Matilde Eizaguirre, Milan Stech, Milena Damulewicz, Olina Bazalova, Petr Kment, Petra Sekyrova, Plamen Kalushkov, Radka Zavodska, Ramon Albajes, Stanislav Rada, Teemu Rintala, Vlastimil Smykal, Xanti Pagola, Zejlko Popovic,
However, several geographical regions are either underrepresented or even absent completely (see red circles in the map below). Therefore, we would really welcome samples (either dead or alive) from following regions:
Europe – England, Sweden, Norway, Denmark, Western and central and South France, Poland – especially north, Mediterranean Islands (Sicily, Corsica, Sardinia), Romania, Moldavia, Portugal, (South) Spain, South England
North Africa– Morocco, Tunisia, Algeria
East– Turkey, Syria, Lebanon, Jordan, Iraq, Iran, Afghanistan, Pakistan, Oman, Saudi Arabia, Emirates, Georgia, Azerbaijan, Turkmenistan, Tajikistan, Uzbekistan, Kyrgyzstan, Kazakhstan, Belarus, East Ukraine, Russia, South West Mongolia, North West China
Sample collection: The optimal way for storing and transporting samples seems to be 96% ethanol (non-denatured). 2ml screw cup tubes can accommodate 5 - 8 bugs from the same locality. We are ready to send prepared tubes filled with EtOH, just send an e-mail request, please. Although we are happy even for one individual bug, 10-15 specimens from one locality are optimal. It is important to have the report of the locality (such as GPS position or locality name from the map, elevation is also very useful). Please, if possible, it would be also great to mention, if the locality was urbanized area (town, park and similar area modified by human) or if the locality is more similar to original nature-like type (forest, steppe, mountains). In ideal case we would like to have samples collected approximately 200 km apart in lowlands, while in mountains or complex terrain even higher density is helpful (down to tens of kilometers).
Living bugs – an alternative is to collect live specimens. Adults survive with wet piece of cotton or cellulose in small paper box for more than one week, as long as it is not too hot. We are really happy to obtain living specimens for establishing colonies, where circadian and photoperiodic phenotypes can be characterized.
Species identification - Pyrrhocoris apteruscan be quite easily identified thanks to its aposematic coloration. Both, larvae or adults can be collected and are welcome. We are also seeking for samples of closely related pyrrhocorids, such as P. sibiricus, P.marginalis, and genus Scantius (see the pictures below).
Contact: David Dolezel or Martin Pivarci; david.dolezel@entu.cas.cz; pivarci@entu.cas.cz; Institute of Entomology; Biology center CAS; Branisovska 31; 370 05 Ceske Budejovice; Czech Republic
Cirkadiánní hodiny - evoluce
Kobelková A., Závodská R., Šauman I., Bazalová O., Doležel D. (2015) Expression of clock genes /period/ and /timeless /in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella Journal of Biological Rhythms: accepted. DOI: 10.1177/0748730414568430
Závodská R, Fexová S, von Wowern G, Han GB, Dolezel D, Sauman I (2012) Is the Sex Communication of Two Pyralid Moths, Plodia interpunctella and Ephestia kuehniella, under Circadian Clock Regulation? Journal of Biological Rhythms 27: 206-216.DOI: 10.1177/0748730412440689
Kobelková A, Bajgar A, Doležel D (2010) Functional molecular analysis of a circadian clock gene timeless promoter from the drosophilid fly Chymomyza costata Journal of Biological Rhythms 25: 399-409. DOI: 10.1177/0748730410385283 Documents for download: Kobelkova 2010